6,828 research outputs found

    The geometric role of symmetry breaking in gravity

    Full text link
    In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry the homogeneous space G/H. The deep reason for this is Cartan's "method of equivalence," giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.Comment: 4 pages. Contribution written for proceedings of the conference "Loops 11" (Madrid, May 2011

    The Immirzi Parameter as an Instanton Angle

    Full text link
    The Barbero-Immirzi parameter is a one parameter quantization ambiguity underpinning the loop approach to quantum gravity that bears tantalizing similarities to the theta parameter of gauge theories such as Yang-Mills and QCD. Despite the apparent semblance, the Barbero-Immirzi field has resisted a direct topological interpretation along the same lines as the theta-parameter. Here we offer such an interpretation. Our approach begins from the perspective of Einstein-Cartan gravity as the symmetry broken phase of a de Sitter gauge theory. From this angle, just as in ordinary gauge theories, a theta-term emerges from the requirement that the vacuum is stable against quantum mechanical tunneling. The Immirzi parameter is then identified as a combination of Newton's constant, the cosmological constant, and the theta-parameter.Comment: 24 page

    Gravity from a fermionic condensate of a gauge theory

    Full text link
    The most prominent realization of gravity as a gauge theory similar to the gauge theories of the standard model comes from enlarging the gauge group from the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan gravity the symmetry must be broken, which can be accomplished by known quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle physics and condensed matter systems, we propose that the symmetry can naturally be broken by a homogenous and isotropic fermionic condensate of ordinary spinors. We demonstrate that the condensate is compatible with the Einstein-Cartan equations and can be imposed in a fully de Sitter invariant manner. This lends support, and provides a physically realistic mechanism for understanding gravity as a gauge theory with a spontaneously broken local de Sitter symmetry.Comment: 16 page

    Comparison of CFD and DSMC Using Calibrated Transport Parameters

    Get PDF
    Hypersonic re-entry flows span a wide range of length scales where regions of both rarefied and continuum flow exist. Traditional computational fluid dynamics (CFD) techniques do not provide an accurate solution for the rarefied regions of such mixed flow fields. Although direct simulation Monte Carlo (DSMC) can be used to accurately capture both the continuum and rarefied features of mixed flow fields, they are computationally expensive when employed to simulate the low Knudsen number continuum regimes. Thus, a hybrid framework for seamlessly combining the two methodologies, CFD and DSMC, continues to be a topic of significant research effort. Ensuring consistency in the reaction kinetics and transport models employed within CFD and DSMC is a crucial requirement for obtaining a reliable solution from a hybrid framework for combined continuum/rarefied high speed flows. This paper represents one of the first studies to utilize the calibrated transport parameters developed to ensure consistency between CFD and DSMC solvers. The new variable soft sphere (VSS) parameters are compared to both previous standard variable hard sphere (VHS) parameters and also to solutions from the CFD transport properties that the new parameters were developed to reproduce

    A new chiral electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field

    Full text link
    We report the observation of sum-frequency signals that depend linearly on an applied electrostatic field and that change sign with the handedness of an optically active solution. This recently predicted chiral electro-optic effect exists in the electric-dipole approximation. The static electric field gives rise to an electric-field-induced sum-frequency signal (an achiral third-order process) that interferes with the chirality-specific sum-frequency at second-order. The cross-terms linear in the electrostatic field constitute the effect and may be used to determine the absolute sign of second- and third-order nonlinear optical susceptibilities in isotropic media.Comment: Submitted to Physical Revie

    In-situ plasma chamber monitoring for feedforward process control

    Full text link
    This paper examines the effects of polymer buildup in plasma etching systems and describes a micromachined sensor for in-situ polymer thickness measurement. Using gas flows of 45 sccm CHF3CHF3 and 15 sccm CF4CF4 at 50 mTorr and 1000 W, the oxide:polysilicon selectivity ranges from 2.6 to 8.5 as the polymer thickness on the tool walls varies from 0 to 240 nm. The polymer sensor is based on an electrothermal oscillator that measures the thermal mass change as polymer builds up on a stress-compensated dielectric window. The change in the thermal mass of the window can be detected as a variation in the pulse width (cooling time) of the oscillation. The device operates with a typical cooling time of 2.7 msec and has a measurement resolution of better than 1 nm. The device is flush-mounted in the chamber wall with the exposed window area protected by a thin film of iridium against damage by the plasma. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87553/2/427_1.pd

    A self-controlled microcontrolled microvalve

    Full text link
    Integrated microvalves are needed for a broad range of semiconductor-processing-related applications. These include precision mass microflow controllers (μFCs) for dry etch systems, miniature gas chromatography systems for real-time monitoring, point-of-use semiconductor process reactant generators, and compact control systems for mini-environments. This paper reports a pneumatically actuated, integrated silicon microvalve, which was developed as a forerunner to an 8b μFC intended for the precision control of semiconductor process gases in the range from 0.1 to 10 sccm. The structure was designed to be batch-fabricated and compatible with on-chip thermopneumatic actuation. Assembled single-bit μFC devices achieve the targeted flow rate of 5 sccm (determined by an in-line flow channel) at 20 psid (1034 torr). The valve alone may achieve significantly higher flow rates. The leak rate is 0.08 sccm under 26.1 psig actuation pressure, and the valve can seal against pressures greater than 29 psid (1500 torr). © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87556/2/937_1.pd

    MacDowell-Mansouri gravity and Cartan geometry

    Full text link
    The geometric content of the MacDowell-Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geometric meaning to the MacDowell-Mansouri trick of combining the Levi-Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous "model spacetime", including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A "Cartan connection" gives a prescription for parallel transport from one "tangent model spacetime" to another, along any path, giving a natural interpretation of the MacDowell-Mansouri connection as "rolling" the model spacetime along physical spacetime. I explain Cartan geometry, and "Cartan gauge theory", in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell-Mansouri gravity, as well as its more recent reformulation in terms of BF theory, in the context of Cartan geometry.Comment: 34 pages, 5 figures. v2: many clarifications, typos correcte

    Electronic states and optical properties of PbSe nanorods and nanowires

    Full text link
    A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.Comment: 35 pages, 12 figure
    • …
    corecore